Accurate and Efficient Computation of Gabor Features in Real-Time Applications
نویسندگان
چکیده
Gabor features are widely used in many computer vision applications such as image segmentation and pattern recognition. To extract Gabor features, a set of Gabor filters tuned to several different frequencies and orientations is utilized. The computational complexity of these features, due to their non-orthogonality, prevents their use in many real-time or near real-time tasks. Many research efforts have been made to address the computational complexity of Gabor filters. Most of these techniques utilize the separability of Gabor filters by decomposing them into 1-D Gaussian filter. The main issue in these techniques is the efficient pixel interpolation along the desired direction. Sophisticated interpolation mechanisms minimize the interpolation error with the increased computational complicity. This paper presents a novel framework in computation of Gabor features by utilizing a sophisticated interpolation scheme – quadratic spline – without increasing the overall computational complexity of the process. The main contribution of this work is the process of performing the interpolation and the convolution in a single operation. The proposed approach has been used successfully in real-time extraction of Gabor features from video sequence. The experimental results show that the proposed framework improves the accuracy of the Gabor features while reduces the computational complexity.
منابع مشابه
3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملAccurate Fruits Fault Detection in Agricultural Goods using an Efficient Algorithm
The main purpose of this paper was to introduce an efficient algorithm for fault identification in fruits images. First, input image was de-noised using the combination of Block Matching and 3D filtering (BM3D) and Principle Component Analysis (PCA) model. Afterward, in order to reduce the size of images and increase the execution speed, refined Discrete Cosine Transform (DCT) algorithm was uti...
متن کاملOnline Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features
Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...
متن کاملAdaBoost Gabor Feature Selection for Classification
This paper describes an application of the AdaBoost algorithm for selecting Gabor features for classification. Gabor wavelets are powerful image descriptors but they often result in very high dimensional feature vectors, which rend them impractical for real applications. We have trained a classifier using the AdaBoost algorithm with a set of Gabor features extracted from images. Compared with t...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کامل